Improving Low-Resource Neural Machine Translation with Filtered Pseudo-Parallel Corpus
نویسندگان
چکیده
Large-scale parallel corpora are indispensable to train highly accurate machine translators. However, manually constructed large-scale parallel corpora are not freely available in many language pairs. In previous studies, training data have been expanded using a pseudoparallel corpus obtained using machine translation of the monolingual corpus in the target language. However, in lowresource language pairs in which only low-accuracy machine translation systems can be used, translation quality is reduces when a pseudo-parallel corpus is used naively. To improve machine translation performance with low-resource language pairs, we propose a method to expand the training data effectively via filtering the pseudo-parallel corpus using a quality estimation based on back-translation. As a result of experiments with three language pairs using small, medium, and large parallel corpora, language pairs with fewer training data filtered out more sentence pairs and improved BLEU scores more significantly.
منابع مشابه
An Empirical Comparison of Simple Domain Adaptation Methods for Neural Machine Translation
In this paper, we compare two simple domain adaptation methods for neural machine translation (NMT): (1) We append an artificial token to the source sentences of two parallel corpora (different domains and one of them is resource scarce) to indicate the domain and then mix them to learn a multi domain NMT model; (2) We learn a NMT model on the resource rich domain corpus and then fine tune it u...
متن کاملBuilding a Neural Machine Translation System Using Only Synthetic Parallel Data
Recent works have shown that synthetic parallel data automatically generated by existing translation models can be an effective solution to various neural machine translation (NMT) issues. In this study, we construct NMT systems using only synthetic parallel data. As an effective alternative to real parallel data, we also present a new type of synthetic parallel corpus. The proposed pseudo para...
متن کاملCopied Monolingual Data Improves Low-Resource Neural Machine Translation
We train a neural machine translation (NMT) system to both translate sourcelanguage text and copy target-language text, thereby exploiting monolingual corpora in the target language. Specifically, we create a bitext from the monolingual text in the target language so that each source sentence is identical to the target sentence. This copied data is then mixed with the parallel corpus and the NM...
متن کاملImproving a Multi-Source Neural Machine Translation Model with Corpus Extension for Low-Resource Languages
In machine translation, we often try to collect resources to improve performance. However, most of the language pairs, such as Korean-Arabic and Korean-Vietnamese, do not have enough resources to train machine translation systems. In this paper, we propose the use of synthetic methods for extending a low-resource corpus and apply it to a multi-source neural machine translation model. We showed ...
متن کاملData Augmentation for Low-Resource Neural Machine Translation
The quality of a Neural Machine Translation system depends substantially on the availability of sizable parallel corpora. For low-resource language pairs this is not the case, resulting in poor translation quality. Inspired by work in computer vision, we propose a novel data augmentation approach that targets low-frequency words by generating new sentence pairs containing rare words in new, syn...
متن کامل